Overview
A digital twin can be defined as a virtual replica of the product that helps understand the operation of products and production lines. With the advent of accessible AFP systems, it is now possible to cost-effectively implement digital twins.
The sensor mounted onto AFP end-effectors can be programmed to continuously inspecting for possible defects e.g. wrinkles, early cut tapes, foreign objects, and large gaps.
Analyzed data can be laid on top of the layup geometry to provide spatially and defect type information.
To facilitate better decisions about the mechanical properties of the part and, consequently, the need for re-work, a manufacturing database that creates a digital twin of the part as manufactured by merging incoming sensor data and use it to determine the margin of safety for the part.
What are digital twins?
A digital twin can be defined as a virtual replica of the product. It starts as a 3D model that is similar to the physical version of the product. The main characteristic of a digital twin is that it allows analyzing real-world data and real-time monitoring of the physical product even after it has left the factory, and it is operating in the field.
The data is collected by means of sensors on the physical version of the product and it is then sent to the digital twin to study the behavior of the physical twin. By using this practice, it is possible to:
Understand the operation of products and production lines.
Prevent accidents.
Predict asset downtime.
Optimize products.
Due to the complexity of the production process safety margins need to be included in the mechanical design of such parts, which in turn offsets some of the advantages of lightweight components. Better documentation of the production process and real world part monitoring will lead to better manufacturing practices, with the potential to keep the safety margins within reasonable ranges while enabling more efficient defect handling and rework processes. While AFP processes have been taking an important place in manufacturing, they have been restricted to a niche industry. However, with the advent of the AFP-XS plug-n-produce solution, it is now possible to cost-effectively implement digital twins in your production line.
State of digital twins in the Industry
The cost of the sensor suite and communication is continuously decreasing, the investment in the infrastructure to realize a digital twin is becoming especially interesting because the costs of the parts produced are relatively high and monitoring of parts pays off quickly. Furthermore, substantial savings may be achieved due to a reduction in end-of-line testing. Therefore, the interest in the implementation of digital twins is the highest it's ever been. The digital twin implemented and proven in Aerospace applications can be scaled to achieve economies of scale, thus making it accessible to other industries employing similar techniques.
Production process and possible defects
During the lay-up process a number of variations and defects may occur, that include e.g. gaps or overlaps in the material, distortions of the fabric, wrinkles, or any kind of foreign objects. A few examples are shown in the figure below. The detection of the defects is very often done through human inspection after each layer and in recent times through sensors.